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A B S T R A C T   

Unsupervised feature selection is very attractive in many practical applications, as it needs no 
semantic labels during the learning process. However, the absence of semantic labels makes the 
unsupervised feature selection more challenging, as the method can be affected by the noise, 
redundancy, or missing in the originally extracted features. Currently, most methods either 
consider the influence of noise for sparse learning or think over the internal structure information 
of the data, leading to suboptimal results. To relieve these limitations and improve the effec-
tiveness of unsupervised feature selection, we propose a novel method named Adaptive Dictio-
nary and Structure Learning (ADSL) that conducts spectral learning and sparse dictionary 
learning in a unified framework. Specifically, we adaptively update the dictionary based on sparse 
dictionary learning. And, we also introduce the spectral learning method of adaptive updating 
affinity matrix. While removing redundant features, the intrinsic structure of the original data can 
be retained. In addition, we adopt matrix completion in our framework to make it competent for 
fixing the missing data problem. We validate the effectiveness of our method on several public 
datasets. Experimental results show that our model not only outperforms some state-of-the-art 
methods on complete datasets but also achieves satisfying results on incomplete datasets.   

1. Introduction 

Nowadays, big data is increasingly showing its advantages in various fields, such as information retrieval, pattern recognition, 
recommendation system (Zheng et al., 2020; Zhu et al., 2019; Wang et al., 2015; Mitra, Murthy & Pal, 2002). The expanding big data 
promotes the rapid development of artificial intelligence and deep learning. However, traditional machine learning can still be 
effective for the study of medical data with limited acquired subjects. For example, for the study of Alzheimer’s disease, depression, 
and other mental disorders, it’s hard to provide an extensive database for deep learning. Moreover, (Zhu, Ma, Yuan & Zhu, 2022; Gan 
et al., 2021) point out that data structure information and semantic features, which are difficult to be considered by most deep learning 
methods, can effectively improve classification performance. In addition, big data brings in the issue of the curse of dimensionality 
(Zhang, Wang, Jin & Wang, 2016; Zhu et al., 2017), posing challenges to computational effectiveness and efficiency. For example, a 
dataset may contain noisy or redundant information in high-dimensional features. Moreover, some feature items can be absent in some 
situations. These issues tend to have significant negative impacts on many pattern analysis tasks. Therefore, it is essential to learn a 
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more compact feature representation for the high-dimensional data, aiming to ensure the accuracy and computational efficiency of the 
pattern analysis tasks. 

To this end, many feature selection methods have been proposed. Feature selection methods typically aim to remove noise and 
irrelevant information by reducing the feature dimension of data. Generally, they can be divided into three categories: unsupervised, 
semi-supervised, and supervised according to whether sample labels are available. Supervised feature selection methods use category 
labels of the sample to select discriminative features. Differently, without sample labels, unsupervised methods rely more on the graph 
structure of data and try to mine the intrinsic correlation between features. Semi-supervised methods usually take an in-between 
roadmap that first extracts the most discriminant features with unlabeled data and then further improves the learning model based 
on the rest labeled part (Zhu et al., 2019). Although the supervised methods can be more reliable with guidance from labels, the label 
acquisition process can be very expensive or labor-intensive in many real-world applications. In this context, it is valuable to develop 
an effective unsupervised feature selection method (Wang et al., 2015; Mitra et al., 2002). 

Among the existing unsupervised feature selection algorithms, sparse dictionary learning (Chen, Guo & Hao, 2020; Mairal, Bach, 
Ponce & Sapiro, 2010) is one of the mainstream. The goal of dictionary learning is to extract the essential features of samples to find a 
suitable sparse representation of the dense and noisy original data. Its advantage is removing the influence of noise and redundant 
features and reducing the complexity of data. However, the classic sparse dictionary learning methods usually perform feature se-
lection based on a fixed dictionary, which is learned from the original dataset. And its performance depends heavily on the quality of 
the dictionary initially constructed. In addition, sparse dictionary learning cannot guarantee the integrity of manifold structure within 
the original data. Spectral learning (Zhu, Gan, Lu, Li & Zhang, 2020; Wang et al., 2016) is also widely used in unsupervised feature 
selection methods, such as Spectral Feature selection (SPEC) (Zhao and Liu, 2007), Muti-cluster Feature Selection (MCFS) (Cai, Zhang 
& He, 2010), and Minimum Redundancy Spectral Feature Selection (MRSF) (Zhao, Wang & Liu, 2010). It can learn the manifold 
structure information of data well. Nevertheless, the above methods perform spectral learning and sparse feature representation 
independently, leading to the suboptimal solution (Zhu, Wu, Ding & Zhang, 2013). To resolve this, (Zhu et al., 2013; Zhu, Li, Zhang, Ju 
& Wu, 2017) simultaneously conduct manifold learning and sparse regression. But they are still limited in relying on fixed dictionaries 
and affinity matrices, which may also be suboptimal. 

It is also noted that the dataset can suffer from the incompleteness issue. In many applications, the problem of missing data is often 
encountered, as data collection can be a complex and long-term process. For example, in the ADNI dataset, subjects are required to take 
different examinations to help doctors better judge their conditions but some subjects are unwilling or not suitable for one of the 
examinations. And, in a movie recommendation system, all the interviewees can’t have seen every movie (Zhang et al., 2019). One 
possibility is to exclude these incomplete samples manually. However, this process increases the workload of researchers and causes 
the waste of samples. 

To overcome the limitations mentioned above, we proposed a robust and effective feature selection method. It integrates sparse 
dictionary learning and spectral learning into a united framework. In general, the proposed method can maintain the intrinsic structure 
information of the original data while removing the noise. More specifically, instead of fixing the input dictionary, we adaptively 
update the dictionary to construct the best basis space for the original data, where each data point can be accurately expressed as a 
sparse linear combination of these basis vectors. We learn the affinity matrix dynamically according to spectral learning, which can not 
only remove the noise data but also maintain the internal relationship between the original data. In addition, we introduce matrix 
completion into our framework to solve the problem of missing data. 

To sum up, the contributions of our research are:  

• We propose a novel method, Adaptive Dictionary and Structure Learning (ADSL), which unifies spectral learning and sparse 
dictionary learning in a framework.  

• Our method adaptively updates the dictionary and affinity matrix simultaneously, preserving the structure of the original data 
while removing the redundancy and noise. Therefore, the feature selection process becomes more robust.  

• By equipping matrix completion, our method can also process incomplete datasets. It not only avoids the waste of data but also 
verifies the generalization ability of our method. 

We organize the remainder of the paper as follows. In Section 2, we briefly introduce some closely related directions. In Section 3, 
some preliminaries are introduced. We describe the modeling process of ADSL in Section 4 and its optimization process in Section 5. In 
Section 6, the experimental results that validate the effectiveness of our method are reported. Section 7 concludes the paper. 

2. Related work 

In this section, we describe the related methods of unsupervised feature selection based on sparse learning and spectral learning. As 
we introduce matrix completion into our whole framework, we also briefly the related works for the matrix completion task. 

2.1. Feature selection 

The goal of feature selection is to reduce the feature dimension for retaining helpful information and removing irrelevant and 
redundant data. In this paper, we mainly focus on the unsupervised feature selection scenario, in which the semantic or category labels 
of the samples in a dataset are assumed unavailable. 

The sparse-regularization-based methods are attractive because of their clear modeling process and good performance (Chen, Zhao 
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& Guo, 2020; Zhang, Kyaw, Chang & Chua, 2017; Zhang, , Zha, Yang, Yan & Chua, 2014). They treat feature selection as a sparse 
regression problem (Chen, Guo & Hao, 2020; Hou, Nie, Li, Yi & Wu, 2014), in which the objective function can be regarded as 
composed of the reconstruction term and regularization term (Peng & Fan, 2017). The former one is usually designed as a recon-
struction or regression error loss term. The latter is typically designed as a sparse term that avoids overfitting and produces repre-
sentation sparsity. For example, the methods proposed by Tibshirani (1996) and Wang, Zhu and Zou (2008) are both based on l1 − norm 
regularization that achieves good sparsity and has been widely adopted. However, the objective function composed of l1 − norm is 
non-convex and challenging to optimize. To solve the optimization problem, many researchers introduced l2,1 − norm (Xiang, Nie, 
Meng, Pan & Zhang, 2012; Nie, Huang, Cai, & Ding, 2010; Liu, Ji, & Ye, 2009) for feature selection. In this way, the objective function 
is relatively easy to optimize. As l1 − norm and l2,1 − norm have limitations in handling outliers (Liu, Ji, & Ye, 2009; Wu, Wang, Gao & 
Li, 2018), Chen, Guo and Hao (2020) adopt l2,r − norm(0< r ≤ 2) as the reconstruction loss term and l2,p − norm(0< p ≤ 1) as the 
sparsity regularization term. 

Unsupervised spectral feature selection (USFS) is another effective method to deal with high-dimensional data, which takes 
manifold learning into account during feature selection. Spectral feature selection is a model that integrates the feature selection 
method and subspace learning method to take the advantage of the two methods (Yuan, Zhong, Lei, Zhu & Hu, 2021). As summarized 
in (Zhu, Zhang, Hu, Zhu and Song, 2018), USFS contains two key components, i.e., graph-based subspace learning and sparsity reg-
ularization. For example, Cai, Zhang and He (2010) and Zhao, Wang, Liu and Ye (2013) obtain the graph representation by performing 
eigenvalue decomposition of the original data, and then perform l1 − norm and l2,1 − norm regularization on the graph representation 
to select significant features, respectively. The above two methods construct graph matrix and feature selection separately, possibly 
leading to suboptimal results. As a step further, several methods are proposed to simultaneously conduct manifold learning and sparse 
regression, such as the Joint Graph Sparse Coding (JGSC) method (Zhu et al., 2013) and the Robust Joint Graph Sparse Coding (RJGSC) 
method (Zhu et al., 2017). JGSC considers manifold learning and spectral clustering in a unified framework, in which F− norm is 
employed. RJGSC replaces the least square loss function in JGSC with a more robust one to avoid the outlier influence. The above 
methods are very dependent on the graph matrix initially learned. To address this limitation, the researchers propose automatically 
updating the graph matrix during learning. For example, the unsupervised Feature Selection with Adaptive Structure Learning (FSASL) 
method (Du and Shen, 2015) obtains the adaptive graph matrix through iteration until convergence. 

Generally, the above methods directly construct the affinity matrix based on the original data and perform feature selection on a 
fixed dictionary. As the data points often lie in high-dimension and contain noise and redundancy, the learned affinity matrix and 
dictionary can be of low quality, therefore having a negative impact on the final feature selection. Differently, our method combines 
spectral learning and sparse dictionary learning in a unified framework via updating the dictionary and graph matrix simultaneously, 
making the whole model more robust to noise and redundancy. 

2.2. Matrix completion method 

Dealing with incomplete datasets for feature representation has received much attention in recent years. Missing data values can be 
broadly classified as missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR) (Wu & 
Lange, 2015). Researchers have proposed a series of methods to deal with the missing dataset problem, including deleting samples with 
missing data, mean substitution, multiple imputations. Removing the sample will cause the waste of samples so that the information of 
missing samples cannot be fully utilized. Then, Candès and Recht (2009) prove that a low-rank matrix can be almost perfectly 
recovered when the number of observed entries exceeds a certain level. Therefore, the task of matrix completion, which recovers 
missing data items from observed data subsets to obtain a complete matrix (Kwon & Choi, 2020), has attracted much attention. Ac-
cording to the algorithm of solving the objective function, low-rank matrix completion algorithms can be divided into the following 
categories: (1) Matrix completion based on kernel norm relaxation. Ma, Goldfarb, & Chen, 2011 and Toh and Yun (2010) relax the 
standard matrix completion problem into a matrix lasso model and solve it by the nearest neighbor gradient algorithm and the 
accelerated nearest neighbor gradient algorithm, respectively. Cai, Candès, & Shen, 2010 introduce the regularization term of the 
elastic net (elastic-net) to increase the stability of the matrix completion problem. (2) Matrix completion based on matrix decom-
position/ factorization. To avoid the complicated singular value decomposition, the target matrix is decomposed into the product of 
two low-rank matrices, therefore improving the efficiency. Following this roadmap, (Jain, Netrapalli & Sanghavi, 2013; Kim, Lee, 
Choi, Kwak and Oh, 2015; Tanner and Wei, 2016; Gu, Wang & Liu, 2016) adopt the alternating minimization methods to solve the 
matrix decomposition model. Liu, Jiao and Shang (2013) proposed a double decomposition model. (3) Matrix completion based on 
non-convex relaxation. For example, Nie, Wang, Huang and Ding (2015) introduce matrix Schatten p-norm into the model to replace 
rank function. Ghasemi, Malek-Mohammadi, Babaie-Zadeh and Jutten (2011) use the Gaussian function instead of the rank function. 

The above methods usually need to know the matrix rank in advance. However, the rank value is generally difficult to estimate in 
practical applications. A new roadmap that firstly estimates the matrix rank has been adopted. Wen, Yin and Zhang (2012) propose a 
low-rank matrix fitting algorithm (LMaFit) to estimate the rank. Shi, Lu and Cheung (2018) propose a novel low-rank matrix 
completion method (L1MC) that can automatically determine the rank of an incomplete matrix based on l1 − norm regularization on 
the weight vector. L1MC is more suitable for our research, as we do not know the matrix rank in advance. In our method, L1MC acts as 
the pre-processing module to complete the dataset if needed. 
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3. Preliminary 

In this section, we first introduce the notations used in this paper. Then we briefly introduce the problem formulation of sparse 
dictionary learning and spectral learning, as well as low-rank matrix completion. These are the fundamental elements of our ADSL 
method. 

3.1. Notations 

The notations in this paper are summarized in Table 1, where the matrices/vectors are denoted by italic boldface uppercase/ 
lowercase letters, respectively. Scalars are represented by normal italic letters. For a matrix X ∈ Rm×n, its l2,1− norm can be defined as 
follows: 

‖ X‖2,1 =
∑m

i=1

(
∑n

j=1

⃒
⃒xij
⃒
⃒2
)1

2

(1)  

3.2. Sparse dictionary learning 

Given a dataset X ∈ Rm×n, its columns indicate n data samples, and each sample is expressed as an m-dimensional vector. We can 
extract a set of basis vectors bi from X as the dictionary matrix B = [b1,b2,⋯,bk] ∈ Rm×k, where bi is a basis vector of m dimensions, and 
k is the vocabulary number of the dictionary. Then, each sample can be expressed as a sparse linear combination of these basis vectors. 
The objective function of the sparse dictionary learning method is defined as below: 

min
S

‖ X − BS‖2
F +α

∑n

i=1
‖ si‖1 s.t.

∑m

i=1

∑k

j=1
b2

ij ≤ 1 (2)  

where S = [s1, s2,⋯, sn] ∈ Rk×n is the sparse representation of the samples X. It can be treated as the projection of the original data to 
the base space B. The first term ‖ X − BS ‖

2
F is the reconstruction error term. The second term is the regularization term, aiming to 

control the sparsity of each vector si. The constraint b2
ij ≤ 1 is to prevent the dictionary from having too large a value. α is the balancing 

parameter. 

3.3. Spectral learning 

Spectral clustering based on the graph Laplacian well preserves the manifold structure of original data. Given the data points {x1,⋯,

xn} ∈ Rm×n, the manifold structure can be represented based on the graph Laplacian: 
∑

i∕=j

‖ xi − xj ‖
2
2ωij = tr

(
XLXT) (3) 

In this equation, ωij is the data similarity between the i− th and j− th sample: 

Table 1 
Notations.  

Notation Description 

X The original and complete feature matrix/The complete feature matrix after completion 
xi The i − th row of X 
xj The j − th column of X 
xij The element on i − th row and j − th column of X 
‖ X‖F The Frobenius norm of X 
‖ X‖2,1 The l2,1 − norm of X 
tr(X) The trace of X 
rank(X) The rank of X 
XT The transpose of X 
X− 1 The inverse of X 
B The base/dictionary matrix 
S The learned representation of data 
D The degree matrix 
W The similarity matrix 
L The Laplacian matrix 
M The feature matrix of the incomplete original dataset 
G The initial graph structure of dataset  
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ωij= {
e−

‖xi − xj‖2
σ , xi ∈ N

(
xj) or xj ∈ N

(
xi)

0, else
(4) 

N(xi) is the k nearest neighbors of sample xi.L is the Laplacian matrix defined as L = D − W, where W = [ωij]|i,j=1,⋯,n ∈ Rn×n is the 
similarity matrix, and D is a diagonal matrix with its dialogue elements as the column sums of W. σ is the scaling parameter. As W 
measures the similarity between all sample pairs within the data, their intrinsic structure properties can be reflected by the Laplacian 
matrix L (Ng, Jordan & Weiss, 2001). 

3.4. Low rank matrix completion 

The rank of a matrix measures the correlation between the rows and columns of a matrix. If the rows or columns of a matrix are 
linearly correlated, it is considered the matrix to be a low-rank matrix or to be sparse. According to the compressed sensing theory, we 
can make use of the existing observed data to fill in the missing data. The low-rank matrix completion problem can be modeled as the 
following rank minimization constrained optimization model: 

min
X

rank(X) s.t.P Ω(X) = P Ω(M) (5)  

where rank(⋅) is the matrix rank, M ∈ RI1×I2 is a target matrix with missing data, and Ω ∈ RI1×I2 is the binary index matrix. If Mij is 
observed, Ωij is 1, otherwise Ωij is 0. P Ω is the relevant sampling operator, which retrieves only the items indexed by Ω. X ∈ RI1×I2 is 
the complete matrix that approximates the original matrix M. 

4. Proposed methods 

In this section, we first present the whole framework of our method, which is shown in Fig. 1. In the first part, an initial dictionary is 
first learned according to the feature matrix, and then an adaptive dictionary is learned through iteration. Meanwhile, in the second 
part, an initial graph structure is learned from the original data, and then the graph is adaptively updated. In the third part, the 
dictionary and the graph are updated under a unified framework to obtain the sparse feature representation. As a complementary 
component, the fourth part of our framework is the matrix completion module prepared for the dataset with missing items. The details 
of these four parts are introduced in the following subsections, respectively. 

4.1. Adaptive dictionary learning 

Previous dictionary learning methods used a fixed dictionary B. However, if this dictionary is affected by noise, the obtained 
representation S is possibly in low quality. To solve this, we propose to adaptively update the dictionary, of which the objective 
function used for feature selection is shown as: 

Fig. 1. The framework of the proposed method. It is mainly composed of four parts. If the dataset is incomplete, matrix completion (Section 4.4) 
should be performed for the missing dataset. Then, an initial dictionary is learned according to the feature matrix, and an adaptive dictionary is 
learned according to Section 4.1 to obtain the sparse representation of the original data. Meanwhile, an initial graph structure is learned from the 
original data, and then the graph is adaptively updated, according to Section 4.2. Finally, the dictionary B and the graph W are updated under a 
unified framework (Section 4.3) to obtain sparse feature representation S, in which feature selection is carried out. 
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min
B,S

J(B,S)=‖ X − BS‖2
F + α ‖ S‖2,1 + β ‖ B‖2,1 (6) 

In Eq. (6), the first term is the fidelity term that measures the reconstruction errors based on the learned dictionary B and data 
representation S. The second term ‖ S‖2,1 avoids the overfitting issue, in which the l2,1 − norm is adopted to control sparsity. It controls 
the sparseness of S and makes the row sum of S corresponding to irrelevant features equal to 0, thus preserving important features. The 
third term ‖ B‖2,1 controls the sparseness of the learned dictionary B, which makes the dictionary itself update during the learning 
process. In this way, the quality of B can be improved. 

4.2. Adaptive laplace graph matrix learning 

The manifold structure represented by a graph Laplacian can be inaccurate, as the similarity between samples can be seriously 
affected by noise. As a consequence, the inaccurate graph Laplacian possibly further impacts the feature selection process based on 
spectral clustering. 

To solve this issue, instead of the original features, we construct the similarity matrix on the new representation S, which contains 
less redundancy and noise. The spectral learning based on the new representation S is formulated as below: 

∑

i∕=j

‖ si − sj ‖
2
2ωij = tr

(
SLST) (7) 

From Eq. (7), we can see that the graph Laplacian can also be adaptively updated based on the newly obtained representation S. 
Then the objective function used for feature selection is shown in Eq. (8): 

min
W

J(W) =
∑

i∕=j

‖ si − sj‖
2
2ωij + λ

∑n

i=1
‖ ωi‖

2
2 (8)  

4.3. Adaptive dictionary and structure learning (ADSL) 

Based on the above adaptive dictionary learning and adaptive Laplacian graph matrix learning, we can construct our unsupervised 
feature selection model, that is, Adaptive Dictionary and Structure Learning (ADSL). The overall objective function is shown as: 

argmin
B,S,W

J(B,S,W)=‖ X − BS‖2
F+α ‖ S‖2,1+β ‖ B‖2,1 + γ

∑n

i,j=1
‖ si − sj‖

2
2ωij + λ

∑n

i=1
‖ ωi‖

2
2 (9)  

s.t.,∀ωi1 = 1,ωii = 0,ωij ≥ 0if j ∈ N(i), otherwise 0  

where α, β, γ, and λ are hyperparameters. 1 is a column vector with all 1, and the term∀ωi1 = 1 constrain the sum of each row element 
of W as 1. 

We can see that Eq. (9) is the combination of Eqs. (6) and (8). The ADSL model is a unified framework that jointly optimizes the 
dictionary B, the affinity matrix W, and the desired feature representation S simultaneously. In other words, the obtained represen-
tation S relieves the noise impact on the dictionary B and the affinity matrix W, while the updated B and W enable an improved S of 
higher quality on the other hand. This process can be realized by solving Eq. (9) in an iterative framework, as described in Section 5. 

4.4. Matrix completion as a complementary module 

Here we assume that the matrix rank is unknown in advance, which is often encountered in practical conditions. We adopt the 
powerful matrix completion method (Shi, Lu & Cheung, 2018) as the complementary module of ADSL. 

The matrix completion model based on low-rank matrix decomposition is expressed as follows: 

min
Z,U,V

‖ Z − UVT ‖
2
F s.t.P Ω(Z) = P Ω(M) (10)  

where M ∈ RI1×I2 is a target matrix with missing terms. Ω ∈ RI1×I2 is the binary index matrix. If Mij is observed, Ωij is 1, otherwise Ωij is 
0. P Ω is the relevant sampling operator, which retrieves only the items indexed by Ω. Z ∈ RI1×I2 is a complete matrix that approximates 
the original matrix M. According to the matrix factorization theory, Z can be factorized as UVT , where U ∈ RI1×R, V ∈ RI2×R, and R (R 
< min(I1, I2)) is the rank of M. 

The rank-one approximation is widely used in matrix completion (Hu, Zhao, Cai, He & Li, 2016; Wang et al., 2015; Wang et al., 
2014). For any matrix Z, it can be expressed as the weighted sum of R rank-one matrices: 

Z =
∑R

r=1
qrurvT

r = Udiag(q)VT (11)  

s.t. ‖ ur‖2=‖vr‖2 = 1, for r = 1,⋯,R 
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where q = [q1,⋯, qr,⋯, qR]
T is the weight vector, U ∈ RI1×R = {ur}

R
r=1, V ∈ RI2×R = {vr}

R
r=1, and R is the rank of Z. 

According to the above low-rank matrix decomposition and rank-one approximation, the matrix completion problem can be 
expressed in the following form: 

min
X,Z

1
2
‖ X − Z ‖

2
F (12)  

s.t. Z =
∑R

r=1
qrurvT

r , P Ω(X) = P Ω(M), ‖ ur‖2 = ‖ vr‖2 = 1, for r = 1,⋯,R 

Note that the matrix rank is unknown in advance, l1 − norm regularization is imposed on the weight matrix q, and the matrix 
completion problem is finally formulated as follows: 

min
X,q,{ur ,vr}

R
r=1 ,R

μ ‖ q‖1 +
1
2
‖ X −

∑R

r=1
qrurvT

r ‖

2

F

(13)  

s.t. P Ω(X) = P Ω(M), ‖ ur‖2 = ‖ vr‖2 = 1, for r = 1,⋯,R  

where R is the rank for estimation. By minimizing Eq. (13), we can automatically determine the rank of the incomplete matrix and 
predict the missing terms (Shi, Lu & Cheung, 2018). 

5. Optimization 

As we need to find three optimal variables for solving the objective function in Eq. (9), the Iteratively Reweighted Least Squares 
(IRLS) framework is adopted. For example, in a typical iteration, we can firstly update S by fixing Wand B, then update B by fixing S 
and W, and finally update W by fixing S and B. In the following, we present the details of the optimization process. 

5.1. Update S by fixing B and W 

Given fixed B and W, Eq. (9) can be reformulated as minimizing the following object function J(S): 

J(S) = ‖ X − BS ‖
2
F+α ‖ S‖2,1 + γ

∑n

i,j=1
‖ si − sj ‖

2
2ωij (14) 

By taking the derivative of S in the above equation, we can obtain: 

∂J(S)
∂S

= − 2BT(X − BS) + 2αD1S + 2γSL (15)  

where D1 is a diagonal matrix, with D1(i, i) = 1
2‖si‖2

. By setting Eq. (15) to zero: 
(
BT B+ αD1

)
S + γSL = BT X (16) 

As both BTB + αD1 and γL are semidefinite positive matrices, the singular value decomposition is carried on them: 

BT B + αD1 = U1C1UT
1 (17)  

γL = V1C2VT
1 (18)  

where U1 and V1 are unitary matrices. Then Eq. (16) can be characterized as: 

U1C1UT
1 S + SV1C2VT

1 = BT X (19) 

By multiplying UT
1 and V1 from left and right side of above equation respectively, we obtain: 

C1UT
1 SV1 + UT

1 SV1C2 = UT
1 BT XV1 (20) 

To simplify the representation, the above formulation can be denoted with Ψ = UT
1SV1 and T = UT

1BTXV1. Thereby, we have: 

C1Ψ + ΨC2 = T (21)  

where C1 = diag(σ(1)
1 ,⋯,σ(m)

1 ), C2 = diag(σ(1)
2 ,⋯, σ(k)

2 ) and Ψij =
Tij

σi
1+σj

2
, respectively. 

Finally, the learned representation can be denoted as: 

S = U1ΨVT
1 (22) 
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5.2. Update B by fixing S and W 

By fixing S and W, the second, the fourth, and the fifth term in Eq. (9) can be regarded as constants, and Eq. (9) can be transformed 
into: 

J(B) =‖ X − BS‖2
F + β ‖ B‖2,1 (23) 

Similar to the above process for solving the variable S above, we take the derivative of the variable B and set it to zero. Then we 
have the following equation: 

βD2B + BSST = XST (24)  

where D2 is a diagonal matrix, with D2(i, i) = 1
2‖bi‖2

. While both SSTand βD2 are semidefinite positive matrices, the singular value 
decomposition is then carried on them: 

SST = U2C3UT
2 (25)  

βD2 = V2C4VT
2 (26)  

where U2 and V2 are unitary matrices. Then Eq. (24) can be characterized as: 

V2C4VT
2 B + BU2C3UT

2 = XST (27) 

By multiplying VT
2 and U2 from the left and right side of the above equation respectively, we obtain: 

C4VT
2 BU2 + VT

2 BU2C3 = VT
2 XST U2 (28) 

To simplify the representation, we let Φ = VT
2BU2 and Γ = VT

2XSTU2. Then we have: 

C4Φ + ΦC3 = Γ (29)  

where C3 = diag(σ(1)
3 ,⋯,σ(m)

3 ), C4 = diag(σ(1)
4 ,⋯, σ(k)

4 ) and Φij =
Γij

σi
3+σj

4
, respectively. 

Finally, the learned dictionary can be denoted as: 

B = V2ΦUT
2 (30)  

5.3. Update W by fixing S and B 

By fixing S and B, Eq. (9) is presented as: 

argmin
W

γ
∑n

i,j=1
‖ si − sj‖

2
2ωij + λ

∑n

i=1
‖ ωi‖

2
2 (31)  

s.t.,∀ωi1 = 1,ωii = 0,ωij ≥ 0if j ∈ N(i), otherwise 0 

Table 2 
Algorithm 1 The pseudo-code of ADSL.  

Algorithm 1 The pseudo-code of ADSL 

Input: The original dataset 
Output: The learned representation S 
if the original dataset is complete 
Initialize: The Laplacian matrix L and the base B 
end 
else if the original dataset is incomplete, i.e., M 
Matrix completion is performed for M according to Section 4.4 
Initialize: The Laplacian matrix L and the base B 
end 
Repeat 
Calculating BTB + αD1 and γL, βD2 and SST 

Update S according to Eq. (22) 
Update B according to Eq. (30) 
Update W according to Eq. (34) 
Calculate Laplacian matrix L = D − W 
Until convergence  
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By denoting hij = ‖ si − sj ‖
2
2, Eq. (31) can be converted into: 

min
ωi

‖ ωi +
1

2 λ
γ
hi ‖

2

2

(32)  

s.t.,∀ωi1 = 1,ωii = 0,ωij ≥ 0if j ∈ N(i), otherwise 0 

Furthermore, the Lagrange function of Eq. (32) is: 

min
ωi ,τ,η

‖ ωi +
1

2 λ
γ
hi ‖

2

2

− τ(ωi1 − 1) − ηT ωT
i (33)  

where τ and η are the Lagrange multipliers. Based on the Karush-Kuhn-Tucker (KKT) conditions, the closed-form solution can be 
achieved as follows: 

ωij =

⎛

⎜
⎜
⎝ −

1
2 λ

γ
hij + τ

⎞

⎟
⎟
⎠

+

(34) 

The whole optimization process of our proposed ADSL algorithm is summarized in Table 2. 

6. Experiment 

We validate the effectiveness of our ADSL model on several public datasets, including the Alzheimer’s Disease dataset1, the 
RELATHE dataset and the Colon dataset2. In this section, the datasets, evaluation metrics, methods for comparison, and imple-
mentation details of our model are first introduced. Then, we report and analyze the quantitative experimental results. 

6.1. Datasets 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal multicenter study designed to develop clinical, imaging, 
genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer’s disease (AD). In our study, we only use a part 
of ADNI data to validate our model. Specifically, we choose 624 participants, containing 190 Normal Control (NC), 303 Mild Cognitive 
Impairment (MCI), and 131 Alzheimer’s Disease (AD). The multi-modal biomarkers used for classification include genetic information 
(APOE4), demographic information (such as age, education, etc.), cognitive tests data, and MRI ROIs measures. 

Moreover, an ADNI dataset with missing data from the TADPOLE challenge3 is also adopted to evaluate the robustness of our 
model. Of note, the unlabeled samples and the PET feature are removed because of the severe absence of data. More details about the 
sample number are shown in Table 3. The RELATHE dataset is a text dataset derived from the 20 Newsgroups original dataset. It has 
two categories and contains 1427 samples with 4322-dimensional features. And the Colon dataset is a biomedical dataset about 
chemotherapy for B/C colon cancer. It includes 62 instances with 2000 features. 

6.2. Evaluation metrics 

To validate the performance of feature selection, we follow the experiment settings commonly adopted in the related works (Zhao 
et al., 2010; Nie et al., 2010; Du & Shen, 2015), including SVM-based classification and K-means-based clustering. For the above two 
methods, we adopt two evaluation metrics that are commonly used in unsupervised feature selection research, including ACC (ac-
curacy) and F1 (F1_measure): 

Table 3 
The details of the complete/incomplete ADNI dataset used in our experiment.   

Label Instances Dimension 

Complete NC 190 2161 
MCI 303 
AD 131 

Incomplete NC 522 999 
MCI 866 
AD 341  

1 http://adni.loni.usc.edu/, https://www.synapse.org/#!Synapse:syn2290704/wiki/64634  
2 https://jundongl.github.io/scikit-feature/datasets.html  
3 https://tadpole.grand-challenge.org/Data/ 
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• ACC: (1) For the classification method, accuracy represents the percentage of the correctly classified samples in the total number of 
samples: 

Acc =
Nc

N   

where N denotes the number of samples and Nc is correctly classified samples. 
(2) For the clustering method, cluster accuracy is used to compare the predicted labels with the true labels: 

Acc =

∑N
i=1δ(ri,map(gi))

N  

where ri, gi and N are the true labels, the predicted labels and the number of samples, respectively. map(x) is used to predict clustering 
labels to best match the true labels. δ is the indicator function: 

δ(x, y) =
{

1, if x = y
0, otherwise    

• F1: The metric of F1 measure jointly considers precision and recall. 

F1 measure =
2 × Precision × Recall

Precision + Recall   

Here Precision = TP
TP+FP, Recall = TP

TP+FN. For classification, TP, FP, and FN mean true positive, false positive, and false negative, 
respectively. For clustering, TP assigns two similar samples to the same cluster. TN assigns two dissimilar samples to different clusters. 
FP assigns two dissimilar samples to the same cluster. FN assigns two similar samples to different clusters. 

6.3. Methods for comparison 

We briefly introduce the methods for comparison, including a baseline model and some state-of-the-art algorithms. Then we 
introduce the implementation details of our ADSL model.  

• Baseline: The baseline means that all the sample features are directly used for classification without feature selection. That is to 
demonstrate the effectiveness of feature selection in general.  

• JGSC (Joint Graph Sparse Coding)(Zhu, Wu, Ding and Zhang, 2013): JGSC considers manifold learning and regression in a unified 
framework. It employs F− norm to perform feature selection.  

• RJGSC (Robust Joint Graph Sparse Coding)(Zhu et al., 2017): Based on JGSC, RJGSC further adopts l2,1− norm to boost the 
robustness of the classification model.  

• GSSR (General Spectral Sparse Regression)(Chen, Guo and Hao, 2020): GSSR handles the outlier features by learning the joint 
sparsity and handles the noisy features by preserving the local structure of the data. 

Table 4 
Average classification/clustering results (ACC%, F1-measure%) of different feature selection algorithms on the complete datasets. The best two 
results are highlighted in bold.  

Algorithm NCvs.AD NCvs.MCI MCIvs.AD RELATHE Colon 

ACC F1 ACC F1 ACC F1 ACC F1 Acc F1 

SVM baseline 67.69 60.45 65.66 77.27 61.82 20.67 73.43 79.68 76.92 57.14 
JGSC 73.85 62.22 64.65 73.68 69.32 27.03 86.01 86.84 84.62 75.00 
RJGSC 76.92 65.12 70.71 78.52 71.59 35.90 88.46 91.15 92.31 90.91 
GSSR 77.85 67.16 65.45 74.18 69.32 32.69 88.39 89.18 89.23 82.07 
w/o updating B 78.15 78.57 72.12 77.23 77.27 62.96 90.28 91.59 87.69 80.56 
ADSL (our) 86.15 86.27 73.74 80.00 74.32 53.33 92.52 92.95 96.92 93.89 

K-means baseline 52.31 53.21 51.35 51.13 52.39 54.16 54.45 60.98 54.84 37.04 
JGSC 60.44 56.95 52.13 52.32 57.37 44.04 54.62 62.39 63.55 41.38 
RJGSC 60.44 56.95 58.92 57.76 62.21 43.75 54.66 62.49 63.87 68.29 
GSSR 60.75 37.32 57.00 71.88 65.21 45.47 54.94 70.16 60.32 44.44 
w/o updating B 57.38 60.08 57.61 57.08 65.67 51.47 54.62 62.39 63.23 42.10 
ADSL (our) 69.47 53.33 60.85 75.35 61.75 69.49 54.94 70.16 64.52 70.27  
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• ADSL (ours):ADSL learns and updates the dictionary, intrinsic manifold structure, and the data representation in a unified 
framework. 

Some implementation details of ADSL-based classification are introduced. The hyperparameters α, β, γ, and λ of ADSL are deter-
mined through 5-folds cross-validation. As for the feature selection, it is realized based on the new representation S. By applying the 
l2,1− norm to S, the discriminative features are indicated by non-zero rows, while the non-discriminative features are indicated by all- 
zero rows. According to the descending order value of l2,1 − norm, we select corresponding k top-level row features. 

Table 5 
Average classification/clustering results (ACC%, F1-measure%) of different feature selection algorithms on the incomplete datasets completed by 
L1MC. The best two results are highlighted in bold.  

Algorithm NCvs.AD NCvs.MCI MCIvs.AD RELATHE 

ACC F1 ACC F1 ACC F1 ACC F1 

SVM baseline 78.74 64.08 65.95 77.86 72.02 17.07 63.99 74.94 
JGSC 82.18 71.56 69.18 78.39 73.66 30.43 82.52 84.47 
RJGSC 82.76 72.73 68.46 75.56 74.90 37.11 85.66 87.83 
GSSR 85.06 81.16 69.89 77.42 74.07 43.24 84.62 85.90 
w/o updating B 86.26 80.00 68.32 76.52 72.67 18.62 81.82 83.85 
ADSL (our) 89.31 85.76 70.25 76.58 75.06 40.21 86.76 87.77 

K-means baseline 50.87 41.60 54.03 54.36 50.70 38.97 54.45 60.98 
JGSC 55.97 37.29 51.15 55.45 58.24 40.78 54.52 61.91 
RJGSC 55.97 48.56 54.03 56.45 71.52 43.75 54.66 62.49 
GSSR 56.20 48.46 56.74 34.24 62.97 21.41 54.66 62.49 
w/o updating B 56.43 48.14 62.10 31.58 71.67 44.09 54.52 61.91 
ADSL (our) 57.71 46.60 62.10 76.56 71.52 43.75 54.94 70.16  

Table 6 
The Colon dataset was sampled randomly at 100% to 60% sampling rates. Then, the missing dataset was completed by L1MC. The best two results are 
highlighted in bold.  

Algorithm SR¼1.0 SR¼0.9 SR¼0.8 SR¼0.7 SR¼0.6 
ACC ACC ACC ACC ACC 

SVM baseline 76.92 69.23 69.23 69.23 69.23 
JGSC 84.62 84.62 76.92 76.92 73.84 
RJGSC 92.31 90.77 84.62 83.08 76.92 
GSSR 89.23 86.16 84.62 84.62 80.00 
w/o updating B 87.69 92.31 83.08 80.00 76.92 
ADSL (our) 96.92 96.92 86.16 84.62 83.08 

K-means baseline 54.84 54.84 54.84 54.84 54.84 
JGSC 63.55 63.23 62.75 60.83 60.00 
RJGSC 63.87 63.55 63.87 62.45 60.65 
GSSR 60.32 58.06 60.00 57.10 56.13 
w/o updating B 63.23 61.29 61.29 58.06 56.45 
ADSL (our) 64.52 63.87 63.87 63.23 61.29  

Table 7 
The Colon dataset was sampled randomly at 100% to 60% sampling rates. Then, the missing dataset was filled with zero. The best two results are 
highlighted in bold.  

Algorithm SR¼1.0 SR¼0.9 SR¼0.8 SR¼0.7 SR¼0.6 
ACC ACC ACC ACC ACC 

SVM baseline 76.92 69.23 61.54 61.54 53.85 
JGSC 84.62 76.92 69.23 61.54 61.54 
RJGSC 92.31 80.00 76.92 69.23 64.62 
GSSR 89.23 84.62 73.84 70.77 66.15 
w/o updating B 87.69 76.92 66.15 66.15 61.54 
ADSL (our) 96.92 84.62 75.38 75.38 69.23 

K-means baseline 54.84 54.84 54.84 50.00 53.23 
JGSC 63.55 56.13 55.16 54.19 54.19 
RJGSC 63.87 57.42 55.81 54.84 54.52 
GSSR 60.32 55.81 54.84 54.52 54.19 
w/o updating B 63.23 55.81 54.84 53.23 53.23 
ADSL (our) 64.52 56.45 55.81 55.16 54.84  
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6.4. Results and analysis 

Table 4 shows the test results of different feature selection methods on complete datasets. We have the following general obser-
vations. First, we can see that our algorithm (ADSL) generally achieves the best performance on the completed dataset, both in the SVM 
classification track and in the K-means clustering track. In the SVM classification track, our ADSL algorithm achieves the best results in 
the three tasks, which are 8.0% (NC vs. AD), 1.62% (NC vs. MCI), 2.24% (RELATHE), and 4.61% (Colon) higher than the suboptimal 
method, respectively. As for the K-means clustering track, ADSL achieves the best results in almost all the tasks. Second, by comparing 
the two tracks, we observe that the performance of the SVM classification is consistently better than the K-means clustering. Similar 
trends can be found in all the following experiments. It is understandable as the K-means clustering does not utilize the label infor-
mation. On the other hand, the results from the K-means clustering demonstrate that the unsupervised feature selection method can 
still obtain satisfactory results. Third, according to the experimental results, the classification performance of our method on the ADNI 
dataset is better than that of other methods. Especially, the detection of the early MCI stage can assist the patients with intervention 
treatment as soon as possible. 

We also have some detailed observations from Table 4. Here ‘w/o updating B’ refers to the intermediate version of our method 
(same for the rest of experiments), where the dictionary B in our model is not updated. On the one hand, we can see that this 

Fig. 2. The average classification accuracy varies with the number of feature selections. The figure only shows the accuracy of SVM classification for 
each comparison method in Table 4. 
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intermediate version still has competitive performance over other methods in general, which empirically demonstrates the effec-
tiveness of updating the spectral structure in our model. On the other hand, by comparing it with our full version ADSL, the gap 
between the two methods further empirically shows the effectiveness of gradually updating the dictionary B. 

We also test the performance under more challenging situations with missing data. The miss rate of the incomplete ADNI dataset is 
37.46%. As for RELATHE, 10% of the dataset is randomly deleted. For fairness, matrix completion is conducted for all the methods for 
comparison. Table 5 shows the results of all the methods tested on the two incomplete datasets. The ADSL achieves the best accuracies 
on all the tasks in the SVM classification track. As for the K-means clustering track, our ADSL still reaches the best accuracy except on 
the MCI vs. AD classification task. These results empirically validate the effectiveness of introducing the matrix completion module. In 

Fig. 3. The convergence of the objective function for different datasets. The convergence graph is obtained using the SVM classification method of 
the objective function on different complete datasets. 
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addition, by comparing the RELATHE dataset in Tables 4 and 5, or comparing the Colon dataset in Tables 6 and 7, we can see that the 
performance based on incomplete data is relatively lower than that based on complete data in general, showing the influence of 
missing data. On the other hand, however, we can see that most of the results in Table 5 are still in an acceptable range, showing the 
usefulness of introducing the matrix completion module. 

We further investigate the robustness of our ADSL module equipped with the matrix completion module. Table 6 shows the 
experimental results on the Colon dataset under different sampling rates (SR), i.e., from 100% to 60%. Similar to the experiments in 
Table 5, all the methods adopt matrix completion. We have the following observations in Table 6. First, as a general trend, the per-
formance drops along with the decreased sampling rate. Second, our method keeps the best performance under all the sampling rates, 
and the classification accuracy remains at an acceptable level. Unlike the setting in Table 6, we fill the missing data with 0 and the 
experimental results are shown in Table 7. Compared with Tables 6, Table 7 is generally lower for all the methods. Moreover, as shown 
in Table 7, as the missing rate increases, the accuracy decreases rapidly especially for SVM classification results, while the accuracy in 
Table 6 declines more slowly. These results prove the usefulness of the matrix completion module for dealing with the missing data 
issue in feature selection applications. Of note, as shown in Table 7, we can see that our ADSL still achieves the best performances 
among all the methods for comparison. As the filled zeros can be seen as noises, these results demonstrate the robustness of our method 
from another perspective. 

In the following, we analyze the influence of the dimension of selected features, as shown in Fig. 2. As for all the five classification 
tasks, we can see that a higher feature dimension generally brings in better classification accuracy, except for several conditions, e.g., 
GSSR under the NC vs. MCI task and the Colon task, JGSC and RJGSC under the MCI vs. AD task. On the contrary, our method has an 
obvious correlation between feature dimension and accuracy, showing better consistency and robustness. 

At last, we investigate the converging ability of our ADSL. Fig. 3 shows the convergence curve of the objective function under 
different datasets and experimental settings. The last row of Fig. 3 shows that the objective function converges on both the full datasets 
(RELATHE) and the missing datasets with 90% sampling rate (RELATHE(SR=0.9)). All the subfigures show that the optimization 
process of ADSL performs well in terms of its convergence. For example, in the three Alzheimer’s disease classification tasks, the 
objective function value quickly converges within ten iterations. 

7. Conclusion 

In this paper, we propose a novel unsupervised feature selection method, ADSL, jointly conducting adaptive sparse dictionary 
learning and adaptive spectral learning. On the one hand, the new dictionary is updated to obtain better bases. On the other hand, the 
intrinsic manifold structure is kept on explored through the adaptively updating of the Laplacian graph in the spectral learning process. 
The above two aspects are encoded into a unified learning model, solved under an alternative optimization framework. During the 
iterative optimization process, the newly learned representation enables the dictionary and manifold structure to be updated adap-
tively, promoting a better-learned data representation. In addition, we introduce the matrix completion module into our framework, 
aiming to make it suitable to handle datasets with missing items. Experimental results on both complete and incomplete datasets 
demonstrate the effectiveness of the proposed ADSL method. 

Our proposed ADSL method still has two shortcomings. The first one is the long computational times, especially for high feature 
dimensions. The second one is that a two-step method is adopted to process incomplete datasets, which may introduce additional 
noises. To deal with these problems, in our future work, feature selection and matrix completion can be optimized under a unified 
framework. 
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multi-view networks. Advances in neural information processing systems. Curran Associates, Inc.. https://proceedings.neurips.cc/paper/2019/file/ 
11b9842e0a271ff252c1903e7132cd68-Paper.pdf  

Zhang, H., Kyaw, Z., Chang, S. F., & Chua, T. S. (2017). Visual translation embedding network for visual relation detection. 2017 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), 3107–3115. https://doi.org/10.1109/CVPR.2017.331, 1702.08319 [Cs] http://arxiv.org/abs/1702.08319 accessed April 18, 
2021. 

Zhang, H., Zha, Z., Yang, Y., Yan, S., & Chua, T. (2014). Robust (Semi) nonnegative graph embedding. IEEE Transactions on Image Processing, 23, 2996–3012. https:// 
doi.org/10.1109/TIP.2014.2325784 

Zhang, Y., Wang, Y., Jin, J., & Wang, X. (2016). Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery 
classification. International Journal of Neural Systems, 27, Article 1650032. https://doi.org/10.1142/S0129065716500325 

Zhao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised learning. In Proceedings of the 24th international conference on machine learning - 
ICML ’07 (pp. 1151–1157). ACM Press. https://doi.org/10.1145/1273496.1273641.  

Zhao, Z., Wang, L., & Liu, H. (2010). Efficient spectral feature selection with minimum redundancy. In , 1. In AAAI-10 / IAAI-10 - Proceedings of the 24th AAAI 
Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference (pp. 673–678). AI Access Foundation. https://asu.pure. 
elsevier.com/en/publications/efficient-spectral-feature-selection-with-minimum-redundancy accessed August 22, 2021. 

Zhao, Z., Wang, L., Liu, H., & Ye, J. (2013). On similarity preserving feature selection. IEEE Transactions on Knowledge and Data Engineering, 25, 619–632. https://doi. 
org/10.1109/TKDE.2011.222 

Zheng, W., Zhu, X., Wen, G., Zhu, Y., Yu, H., & Gan, J. (2020). Unsupervised feature selection by self-paced learning regularization. Pattern Recognition Letters, 132, 
4–11. https://doi.org/10.1016/j.patrec.2018.06.029 

Zhu, X., Gan, J., Lu, G., Li, J., & Zhang, S. (2020). Spectral clustering via half-quadratic optimization. World Wide Web, 23, 1969–1988. https://doi.org/10.1007/ 
s11280-019-00731-8 

Zhu, X., Hu, R., Lei, C., Thung, K. H., Zheng, W., & Wang, C. (2019). Low-rank hypergraph feature selection for multi-output regression. World Wide Web, 22, 517–531. 
https://doi.org/10.1007/s11280-017-0514-5 

Zhu, X., Li, X., Zhang, S., Ju, C., & Wu, X. (2017). Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Transactions on Neural Networks 
and Learning Systems, 28, 1263–1275. https://doi.org/10.1109/TNNLS.2016.2521602 

Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., & Wang, C. (2017). Graph PCA hashing for similarity search. IEEE Transactions on Multimedia, 19, 2033–2044. https://doi.org/ 
10.1109/TMM.2017.2703636 

Zhu, X., Wu, X., Ding, W., & Zhang, S. (2013). Feature selection by joint graph sparse coding. In Proceedings of the 2013 SIAM international conference on data mining 
(SDM), society for industrial and applied mathematics (pp. 803–811). https://doi.org/10.1137/1.9781611972832.89 

Zhu, X., Zhang, S., Hu, R., Zhu, Y., & Song, J. (2018). Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Transactions on 
Knowledge and Data Engineering, 30, 517–529. https://doi.org/10.1109/TKDE.2017.2763618 

Zhu, Y., Ma, J., Yuan, C., & Zhu, X. (2022). Interpretable learning based dynamic graph convolutional networks for Alzheimer’s disease analysis. Information Fusion, 
77, 53–61. https://doi.org/10.1016/j.inffus.2021.07.013 

Y. Guo et al.                                                                                                                                                                                                            

https://doi.org/10.1016/j.ipm.2021.102733
https://proceedings.neurips.cc/paper/2019/file/11b9842e0a271ff252c1903e7132cd68-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/11b9842e0a271ff252c1903e7132cd68-Paper.pdf
https://doi.org/10.1109/CVPR.2017.331
http://arxiv.org/abs/1702.08319
https://doi.org/10.1109/TIP.2014.2325784
https://doi.org/10.1109/TIP.2014.2325784
https://doi.org/10.1142/S0129065716500325
https://doi.org/10.1145/1273496.1273641
https://asu.pure.elsevier.com/en/publications/efficient-spectral-feature-selection-with-minimum-redundancy
https://asu.pure.elsevier.com/en/publications/efficient-spectral-feature-selection-with-minimum-redundancy
https://doi.org/10.1109/TKDE.2011.222
https://doi.org/10.1109/TKDE.2011.222
https://doi.org/10.1016/j.patrec.2018.06.029
https://doi.org/10.1007/s11280-019-00731-8
https://doi.org/10.1007/s11280-019-00731-8
https://doi.org/10.1007/s11280-017-0514-5
https://doi.org/10.1109/TNNLS.2016.2521602
https://doi.org/10.1109/TMM.2017.2703636
https://doi.org/10.1109/TMM.2017.2703636
https://doi.org/10.1137/1.9781611972832.89
https://doi.org/10.1109/TKDE.2017.2763618
https://doi.org/10.1016/j.inffus.2021.07.013

	Adaptive dictionary and structure learning for unsupervised feature selection
	1 Introduction
	2 Related work
	2.1 Feature selection
	2.2 Matrix completion method

	3 Preliminary
	3.1 Notations
	3.2 Sparse dictionary learning
	3.3 Spectral learning
	3.4 Low rank matrix completion

	4 Proposed methods
	4.1 Adaptive dictionary learning
	4.2 Adaptive laplace graph matrix learning
	4.3 Adaptive dictionary and structure learning (ADSL)
	4.4 Matrix completion as a complementary module

	5 Optimization
	5.1 Update S by fixing B and W
	5.2 Update B by fixing S and W
	5.3 Update W by fixing S and B

	6 Experiment
	6.1 Datasets
	6.2 Evaluation metrics
	6.3 Methods for comparison
	6.4 Results and analysis

	7 Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	References


